Anomaly Detection Based on Regularized Vector Auto Regression in Thermal Power Plant
نویسندگان
چکیده
منابع مشابه
Anomaly Detection in Grid Computing Based on Vector Quantization
An efficient and effective intrusion detection model based the Vector Quantization (VQ) technique is proposed. This model is suitable for security monitoring in the grid computing environment. Experimental results based on this model have shown very promising performance in terms of high detection rate and low false alarm rate.
متن کاملSupport vector regression for anomaly detection from measurement histories
This research focuses on the analysis of measurements from distributed sensing of structures. The premise is that ambient temperature variations, and hence the temperature distribution across the structure, have a strong correlation with structural response and that this relationship could be exploited for anomaly detection. Specifically, this research first investigates whether support vector ...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملSupport Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting
Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR), this paper presents a SVR model hybridized with the empirical mode decomposition (EMD) method and auto regression (AR) ...
متن کاملOnline Anomaly Detection Based on Support Vector Clustering
A two-phase online anomaly detection method based on support vector clustering (SVC) in the presence of non-stationary data is developed in this paper which permits arbitrary-shaped data clusters to be precisely treated. In the first step, offline learning is performed to achieve an appropriate detection model. Then the current model dynamically evolves to match the rapidly changing real-world ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC Web of Conferences
سال: 2015
ISSN: 2261-236X
DOI: 10.1051/matecconf/20153506002